Karmaşık Sayıların Kutupsal Gösterimi

Karmaşık Sayıların Kutupsal Gösterimi: Karmaşık Sayıların Kutups... - Bu makaledeki notlar: karmasik sayilar ..

Bu makalenin Karmaşık Sayıların Kutupsal Gösterimi ile iligli olan sorularınızı gidereceğini düşünüyorum.

Karmaşık Sayıların Kutupsal Gösterimi

Bir z = a + ib sayısını Reel düzlemde (a,b) noktasını göstermektedir. Diğer taraftan bu noktayı (r,Φ) şeklinde de ifade edebiliriz. Şimdi karmaşık analizde (r,Φ) gösterimine denk fakat bundan daha yaygın olan, kutupsal gösterimi elde edelim:

Üstteki şekilden görüldüğü gibi a=rcosΦ , b=rsinΦ ve böylece de z=r(cosΦ+isinΦ) elde edilir. Bu ifadeye z=a+ib sayısının kutupsal (polar) gösterimi adı verilmektedir. Buna bazen trigonometrik gösterim de denir.

Burada dir. Çoğunlukla Φ=argz yazımı ile belirteceğimiz Φ sayısına z’nin argümenti (amplitit) denir. Hemen belirtelim ki bir karmaşık sayının kutupsal gösterimi bir tek değildir. Gerçekten yukarıdaki z sayısını belirtmek için Φ yerine Φ+2kπ (k – tam sayı) de alabiliriz.
Şekilden görüldüğü gibi;


olarak bulunur. Ancak bir çalışmada argüment (-π,π] aralığında düşünülürse, Φ bir tek olarak belirtilebilir. Bu özellikteki Φ sayısına z nin esas argümenti denir.

kaynak

Sponsorlu Bağlantılar

Karmaşık Sayıların Kutupsal Gösterimi İçin Yorum Yap